Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nano Lett ; 23(12): 5409-5416, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307077

RESUMO

Defect engineering in perovskite thin films has attracted extensive attention recently due to the films' atomic-scale modification, allowing for remarkable flexibility to design novel nanostructures for next generation nanodevices. However, the defect-assisted three-dimensional nanostructures in thin film matrices usually has large misfit strain and thus causes unstable thin film structures. In contrast, defect-assisted one- or two-dimensional nanostructures embedded in thin films can sustain large misfit strains without relaxation, which make them suitable for defect engineering in perovskite thin films. Here, we reported the fabrication and characterization of edge-type misfit dislocation-assisted two-dimensional BiMnOx nanochannels embedded in SrTiO3/La0.7Sr0.3MnO3/TbScO3 perovskite thin films. The nanochannels are epitaxially grown from the surrounding films without noticeable misfit strain. Diode-like current rectification was spatially observed at nanochannels due to the formation of Schottky junctions between BiMnOx nanochannels and conducting La0.7Sr0.3MnO3 thin films. Such atomically scaled heterostructures constitute more flexible ultimate functional units for nanoscale electronic devices.

3.
Nat Commun ; 14(1): 1940, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024455

RESUMO

Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3 (LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3 (LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity.

4.
Adv Mater ; 35(23): e2301533, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944373

RESUMO

Hydrazine-assisted water electrolysis offers a feasible path for low-voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5 -alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5 -alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5 bifunctional electrocatalysts enable, high performance hydrazine-assisted water electrolysis delivering a current density of 100 mA cm-2 at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm-2 at a cell voltage of 0.6 V. The RhRu0.5  electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm-2 for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine-assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen.

5.
Nature ; 606(7913): 292-297, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676428

RESUMO

Spatially resolved vibrational mapping of nanostructures is indispensable to the development and understanding of thermal nanodevices1, modulation of thermal transport2 and novel nanostructured thermoelectric materials3-5. Through the engineering of complex structures, such as alloys, nanostructures and superlattice interfaces, one can significantly alter the propagation of phonons and suppress material thermal conductivity while maintaining electrical conductivity2. There have been no correlative experiments that spatially track the modulation of phonon properties in and around nanostructures due to spatial resolution limitations of conventional optical phonon detection techniques. Here we demonstrate two-dimensional spatial mapping of phonons in a single silicon-germanium (SiGe) quantum dot (QD) using monochromated electron energy loss spectroscopy in the transmission electron microscope. Tracking the variation of the Si optical mode in and around the QD, we observe the nanoscale modification of the composition-induced red shift. We observe non-equilibrium phonons that only exist near the interface and, furthermore, develop a novel technique to differentially map phonon momenta, providing direct evidence that the interplay between diffuse and specular reflection largely depends on the detailed atomistic structure: a major advancement in the field. Our work unveils the non-equilibrium phonon dynamics at nanoscale interfaces and can be used to study actual nanodevices and aid in the understanding of heat dissipation near nanoscale hotspots, which is crucial for future high-performance nanoelectronics.

6.
Nat Commun ; 13(1): 2358, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487934

RESUMO

The enhanced compositional flexibility to incorporate multiple-principal cations in high entropy oxides (HEOs) offers the opportunity to expand boundaries for accessible compositions and unconventional properties in oxides. Attractive functionalities have been reported in some bulk HEOs, which are attributed to the long-range compositional homogeneity, lattice distortion, and local chemical bonding characteristics in materials. However, the intricate details of local composition fluctuation, metal-oxygen bond distortion and covalency are difficult to visualize experimentally, especially on the atomic scale. Here, we study the atomic structure-chemical bonding-property correlations in a series of perovskite-HEOs utilizing the recently developed four-dimensional scanning transmission electron microscopy techniques which enables to determine the structure, chemical bonding, electric field, and charge density on the atomic scale. The existence of compositional fluctuations along with significant composition-dependent distortion of metal-oxygen bonds is observed. Consequently, distinct variations of metal-oxygen bonding covalency are shown by the real-space charge-density distribution maps with sub-ångström resolution. The observed atomic features not only provide a realistic picture of the local physico-chemistry of chemically complex HEOs but can also be directly correlated to their distinctive magneto-electronic properties.

7.
Sci Adv ; 8(6): eabj5881, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138890

RESUMO

Ferroelectric semiconductors are rare materials with both spontaneous polarizations and visible light absorptions that are promising for designing functional photoferroelectrics, such as optical switches and ferroelectric photovoltaics. The emerging halide perovskites with remarkable semiconducting properties also have the potential of being ferroelectric, yet the evidence of robust ferroelectricity in the typical three-dimensional hybrid halide perovskites has been elusive. Here, we report on the investigation of ferroelectricity in all-inorganic halide perovskites, CsGeX3, with bandgaps of 1.6 to 3.3 eV. Their ferroelectricity originates from the lone pair stereochemical activity in Ge (II) that promotes the ion displacement. This gives rise to their spontaneous polarizations of ~10 to 20 µC/cm2, evidenced by both ab initio calculations and key experiments including atomic-level ionic displacement vector mapping and ferroelectric hysteresis loop measurement. Furthermore, characteristic ferroelectric domain patterns on the well-defined CsGeBr3 nanoplates are imaged with both piezo-response force microscopy and nonlinear optical microscopic method.

8.
Sci Adv ; 6(26): eaay6689, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32637589

RESUMO

Ceramic aerogels are promising lightweight and high-efficient thermal insulators for applications in buildings, industry, and aerospace vehicles but are usually limited by their brittleness and structural collapse at high temperatures. In recent years, fabricating nanostructure-based ultralight materials has been proved to be an effective way to realize the resilience of ceramic aerogels. However, the randomly distributed macroscale pores in these architectures usually lead to low stiffness and reduced thermal insulation performance. Here, to overcome these obstacles, a SiC@SiO2 nanowire aerogel with a nanowire-assembled anisotropic and hierarchical microstructure was prepared by using directional freeze casting and subsequent heat treatment. The aerogel exhibits an ultralow thermal conductivity of ~14 mW/m·K, an exceptional high stiffness (a specific modulus of ~24.7 kN·m/kg), and excellent thermal and chemical stabilities even under heating at 1200°C by a butane blow torch, which makes it an ideal thermally superinsulating material for applications under extreme conditions.

9.
Nature ; 575(7783): 480-484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610544

RESUMO

The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors1-3, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface4-6. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO3/BiFeO3 heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO3. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.

10.
Nano Lett ; 19(10): 6812-6818, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508969

RESUMO

Ferroelectric heterostructures, with capability of storing data at ultrahigh densities, could act as the platform for next-generation memories. The development of new device paradigms has been hampered by the long-standing notion of inevitable ferroelectricity suppression under reduced dimensions. Despite recent experimental observation of stable polarized states in ferroelectric ultrathin films, the out-of-plane polarization components in these films are strongly attenuated compared to thicker films, implying a degradation of device performance in electronic miniaturization processes. Here, in a model system of BiFeO3/La0.7Sr0.3MnO3, we report observation of a dramatic out-of-plane polarization enhancement that occurs with decreasing film thickness. Our electron microscopy analysis coupled with phase-field simulations reveals a polarization-enhancement mechanism that is dominated by the accumulation of oxygen vacancies at interfacial layers. The results shed light on the interplay between polarization and defects in nanoscale ferroelectrics and suggest a route to enhance functionality in oxide devices.

11.
Nature ; 570(7759): 87-90, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168106

RESUMO

Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides reveal the electronic phases that emerge when a bulk crystal is reduced to a monolayer1-4. Transition-metal oxide perovskites host a variety of correlated electronic phases5-12, so similar behaviour in monolayer materials based on transition-metal oxide perovskites would open the door to a rich spectrum of exotic 2D correlated phases that have not yet been explored. Here we report the fabrication of freestanding perovskite films with high crystalline quality almost down to a single unit cell. Using a recently developed method based on water-soluble Sr3Al2O6 as the sacrificial buffer layer13,14 we synthesize freestanding SrTiO3 and BiFeO3 ultrathin films by reactive molecular beam epitaxy and transfer them to diverse substrates, in particular crystalline silicon wafers and holey carbon films. We find that freestanding BiFeO3 films exhibit unexpected and giant tetragonality and polarization when approaching the 2D limit. Our results demonstrate the absence of a critical thickness for stabilizing the crystalline order in the freestanding ultrathin oxide films. The ability to synthesize and transfer crystalline freestanding perovskite films without any thickness limitation onto any desired substrate creates opportunities for research into 2D correlated phases and interfacial phenomena that have not previously been technically possible.

12.
Natl Sci Rev ; 6(4): 669-683, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691922

RESUMO

Domain walls (DWs) in ferroelectrics are atomically sharp and can be created, erased, and reconfigured within the same physical volume of ferroelectric matrix by external electric fields. They possess a myriad of novel properties and functionalities that are absent in the bulk of the domains, and thus could become an essential element in next-generation nanodevices based on ferroelectrics. The knowledge about the structure and properties of ferroelectric DWs not only advances the fundamental understanding of ferroelectrics, but also provides guidance for the design of ferroelectric-based devices. In this article, we provide a review of structures and properties of DWs in one of the most widely studied ferroelectric systems, BiFeO3 thin films. We correlate their conductivity and photovoltaic properties to the atomic-scale structure and dynamic behaviors of DWs.

13.
Adv Mater ; 29(9)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28004864

RESUMO

Transition metal perovskite chalcogenides are a new class of versatile semiconductors with high absorption coefficient and luminescence efficiency. Polycrystalline materials synthesized by an iodine-catalyzed solid-state reaction show distinctive optical colors and tunable bandgaps across the visible range in photoluminescence, with one of the materials' external efficiency approaching the level of single-crystal InP and CdSe.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...